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The flow between two finite rotating disks enclosed by a cylinder is investigated both 
numerically and experimentally. For this finite geometry the full stationary Navier- 
Stokes equations are solved numerically without similarity assumptions. Experi- 
mental results are obtained by means of stereophotography of small tracer particles. 
The results are in good agreement with the numerical solution. Owing to the presence 
of the cylinder sidewall, the solution is found to be unique for all values of the 
parameters considered. When the disks rotate in opposite senses with counter-rotation 
above 15 Yo, a stagnation point appears a t  the slower-rotating disk. This stagnation 
point is associated with a two-cell structure in the meridional plane and is experi- 
mentally observed as a ring of particles a t  the slower-rotating disk. Near the axis of 
rotation the solution is found to satisfy similarity demands ; for weak counter-rotation 
the solution is of Batchelor type near the axis of rotation, but for strong counter- 
rotation a Stewartson profile is found to be more adequate for the description of the 
tangential velocity near the axis. 

1. Introduction 
The steady flow of an incompressible viscous fluid between two infinite rotating 

disks has aroused considerable interest because it offers the possibility of obtaining 
exact solutions of the Navier-Stokes equations. 

Von Karman (1921) investigated the flow above a single infinite rotating disk; he 
showed that the Navier-Stokes equations can be reduced to  a set of nonlinear 
ordinary differential equations by means of a similarity transformation. Von Karman 
pointed out that  outside the disk-boundary layer the tangential and radial velocities 
tend to zero for increasing Reynolds number. 

Batchelor (1951) showed that, on the basis of von Karman’s similarity transform- 
ation, the single-disk problem could be extended to  the flow between two rotating 
disks. He argued that for high Reynolds numbers the main body of the fluid would 
rotate with constant angular velocity, and that boundary layers would develop a t  
both disks. Investigating the same problem, Stewartson (1953) prediced that, for the 
case of counter-rotating disks as well as with one disk a t  rest, the main body of the 
fluid outside the disk-boundary layers would not rotate. This is in contrast with 
Batchelor’s suggestion. Picha & Eckert (1958) confirmed Stewartson’s conclusions 
experimentally for the case of counter-rotating disks. They brought out the importance 
of the housing of the disks. I n  particular with one disk at rest, they found a Batchelor 
type of flow with housing, whereas a Stewartson flow was found when the disks are 
free. 
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Some years later, Mellor, Chapple & Stokes ( 1968) reported the so-called multiple-cell 
solutions obtained by numerical techniques (here a cell is defined by planes parallel 
to the disks at which the vertical velocity vanishes). They treated the problem when 
one disk is rotating while the other is stationary, and discovered two one-cell 
branches, one two-cell branch and one three-cell branch of solutions. 

Roberts & Shipman (1976) confirmed and extended the work of Mellor et al. and 
produced five-cell solutions. The first of the one-cell branches corresponds to the set 
of solutions discussed by Batchelor (1951); the other branch leads in the limit of large 
Reynolds numbers to the single-disk solution of von Karman (1921). 

Nguyen, Ribault & Florent (1975) also established the existence of multiple 
solutions : for a given flow configuration several solutions appear to exist. At moderate 
Reynolds numbers a Batchelor-type solution is found, at higher Reynolds numbers 
an additional (Stewartson-type) solution is obtained numerically. 

This work has been extended by Holodniok, Kubicek & Hlavacek (1977); for the 
case s = 0.8 (s = sl,/QB is the ratio of the angular velocities of the top and bottom 
disks) they found branches of one, three and even five solutions. Some of those 
branches contained Batchelor-type as well as Stewartson-type solutions. Later on, 
Holodniok, Kubicek & Hlavacek (1981) computed a multiplicity of similarity 
solutions in the range - 1 < s < 1 a t  Re = 625. Non-unique solutions to the single-disk 
problem have been calculated by Zandbergen & Dijkstra (1977). Later on, Zandbergen 
(1979) and Dijkstra (1980) showed that the original von KBrman problem of a rotating 
disk in an infinite stationary medium has an infinite number of solutions. 

All papers referred to above are based on the similarity equations, but for disks 
confined in a circular cylinder the partial differential equations must be used for the 
description of the flow. 

Pao (1970, 1972) investigated the flow between two finite disks confined in a 
cylinder of aspect ratio 1. He obtained solutions of the full stationary Navier-Stokes 
equations for the case where one of the disks is held fixed. When the Reynolds number 
is increased beyond 400 his numerical procedure did not converge anymore. 

Lugt & Haussling (1973) extended Pao’s work and obtained numerical results for 
one disk fixed (s= 0) and Ekman numbers down to 0.0002. For the case of 
counter-rotating disks (s < 0) they calculated results at Ek = 001 and established 
a two-cell structure in the meridional plane for certain negative values of s. 

During the past decades a lot of numerical work has been done, but experimental 
verifications of numerical results are scarce, in particular for the case where the disks 
are rotating in opposite senses. 

Mellor et al. (1968) and Nguyen et al. (1975) used a hot-wire anemometer to measure 
the tangential and radial velocity components of the flow between two finite disks 
of which one is rotating. Although edge effects appeared to be considerable, the 
experimental results corresponded to a Batchelor-type flow. 

For the confined arrangement with one stationary and one rotating disk, tangential 
velocity measurements were performed by Bien & Penner (1970), using a laser-Doppler 
anemometer. They too indicated the presence of a Batchelor-type flow : far from the 
cylinder sidewall the main body of the fluid appeared to rotate. 

Concerning the flow between two disks, most experiments known thus far have been 
carried out for a stationary and a rotating disk. In  the present study we investigate 
the fluid flow between two finite rotating disks confined in a cylinder of low aspect 
ratio for general rotation ratios s, a t  Reynolds numbers varying from 100 to 1000. 
The most interesting results are obtained for negative values of s, so that the main 
part of this work focuses attention on the counter-rotation case. 
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FIGURE 1. The geometry of the problem. 

For this finite geometry the full Navier-Stokes equations have been solved 
numerically using a finite-difference technique. When one disk is stationary (s = 0), 
solutions are obtained for Reynolds numbers up to 1000. When the disks rotate in 
opposite senses (s < 0) the numerical iteration still converges for Reynolds numbers 
up to 100, producing extremely interesting solutions, similar to those reported by 
Lugt & Haussling (1973). The flow in the meridional plane appears to possess a two-cell 
character: the shape of the cells depends on the rotation ratio s and the Reynolds 
number. A stagnation point occurs on the slowest rotating disk. 

Experimental results were obtained, using a measuring technique based on 
stereophotography of small tracer particles in the fluid. At the stagnation point these 
tracer particles crowd together, producing a ring (at the slowest rotating disk) which 
is clearly observable. The numerical and the experimental results perfectly agree for 
both the position of the stagnation point and the velocity components elsewhere in 
the fluid. However, multiple solutions have not been found, either experimentally, 
or numerically. 

2. Formulation of the problem 
In  order to model the flow between two infinite rotating disks we consider a rotating 

cylinder with small aspect ratio 6 = H/L (Hand L denoting respectively the height 
and radius of the cylinder, see figure l) ,  filled with a homogeneous, slightly 
viscous Newtonian fluid with kinematic viscosity v and constant density p. The top 
and bottom disks of the cylinder can rotate independently with constant angular 
velocities R, and RB respectively. 

For a convenient description of the flow it is useful to define the ratio of angular 
velocities as 

8 = o T / a B .  

The sidewall of the cylinder is fixed to the bottom disk, and consequently rotates with 
angular velocity RB as well. The case s = 1 corresponds to solid-body rotation and 
will be excluded in the sequel. It is assumed that the flow in the cylinder is laminar 
and stationary. 

The motion of the fluid (velocity components u’,u’,w’) will be related to a 
non-rotating cylindrical coordinate system (r ‘ ,  8 , ~ ’ ) .  It is convenient to non- 
dimensionalize the coordinates, the velocity components and the pressure p’ as 
follows : 

r‘ = rL, u‘ = uLAR, p’ = ppL2ARRmax, 

z’ = zH, U‘ = uLAR, w‘ = wHAQ, (2.2) 

5-2 

I Afi  = IQB-QTI, Qmax  = max (IQBI, IQTI), 
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where prime quantities are dimensional. By symmetry, the equations of momentum 
(Navier-Stokes) and continuity then take the following non-dimensional forms : 

(2.6) 
au aw -+-+- = 0, 

r ar aZ 
with the non-dimensional parameters 

i (Rossby number), 
An RO = ~ 

Qmax 

H2fiIn,x 

V Ek = (Ekman number), 

I H 
L 

6 = - (aspect ratio). 

It is common to use the Reynolds number Re* defined by 

The (non-dimensional) boundary conditions for the basic equations (2.3)-(2.6) are (see 
figure 1) 

u=O,  u = a r ,  w = 0  ( z = O ,  O < r <  l ) , )  

u = 0, v = sar, w = 0 ( x  = 1,  0 < r < l) ,  (2.9) 

u = O ,  u = a ,  w = O  ( r = l ,  O < z < l ) ,  

with a = n,/ASZ. 
The axisymmetry of the problem permits a description in terms of the meridional 

stream function @ and the azimuthal component 6 of the vorticity vector, defined 

(2.10) 

By elimination of the pressure p ,  the governing equations (2.3)-(2.6) can then be 
written as 

(2.11) 

(2.13) 
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Expressed in terms of u, + and g, the boundary conditions (2.9) become, with 
a = Q,/ASZ, 

a+ = 0, u = ar, = o ( z  = 0, o < r < I),] - 
az 

(2.14) 

C = O ,  v = o ,  + = o  ( r = o ,  o < z < ~ ) . j  
The latter .condition at r = 0 is a consequence of the axisymmetry in the flow 
configuration. 

In reality, a narrow gap of width d is present between the upper disk and the 
cylinder sidewall (see figure 1 ) ;  in this gap the fluid has a free surface, which is 
throughout assumed to be flat. For an adequate description of the flow near the gap, 
the boundary condition (2.14) at z = 1 must be replaced by 

in which l ( r )  is some function of the radial coordinate. In the numerical part of this 
study ($3) l (r)  is considered to be linear in r. 

3. The numerical method of solution 

3.1. General outline of the method 

The full system (2.1 1)-(2.13) ofpartial differential equations with boundary conditions 
(2.14) has been solved by means of a finite-difference technique using central 
differencing. The first-order derivatives appearing in the nonlinear part of (2.1 1 )  and 
(2.12) are discretized in two ways, central or upwind differencing, leading to two 
modes of the final computer program. For the sake of resolution near the walls, 
coordinate-stretching functions are introduced. The discretizations are performed 
with a uniform grid in the transformed plane; the resulting system of nonlinear 
algebraic equations is solved by means of an alternating-direction implicit (ADI) 
technique and Newton iteration to cope with nonlinearity. 

3.2. Transformation of independent variables and equations 
For small values of the Ekman number Ek we may expect boundary layers at the 
disks and also at  the cylinder sidewall. In  order to obtain sufficient resolution of the 
numerical method in these layers a coordinate transformation is applied. This 
approach is similar to  that adopted by Lugt & Haussling (1973), although we will 
use other stretching functions. The present transformation of the radial coordinate 
r and the axial coordinate z is taken as follows: 

exp (ar )  - 1 
exp (a )  - 1 ’ II: = X ( r )  = a > 0, 

y = Y(2) = , P >  0, y > 0. (3.2) 
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Since X and Y are positive-definite and X ( 0 )  = Y(0)  = 0, X(1) = Y(1) = 1, this 
transformation maps the region 0 < r ,  z < 1 onto the region 0 < x, y < 1 in a 
monotonic and uniquely invertible way. The inverse functions will be denoted by 

r = R(x) X-l(x), z = Z(y) E Y-'(y). (3.3) 

The parameter e in (3.2) is a measure for the thickness of the boundary layers at the 
disks. Note that the two pole singularities in (3.2) are a t  z = -Be and a t  z = 1 +ye, 
both at a distance O(e)  outside the interval 0 < x < 1. The value of e will be small 
and prescribed for a given problem. In  contrast with e the parameters a, /3 and y 
appearing in the transformation are numerical control parameters, chosen in such a 
way that the transformation has the desired effect, i.e. to produce mesh points where 
required (see 93.3). I n  the final production stage of the numerical work the following 
values for the transformation parameters have been used : 

a = 3, /? = y = 2 (0 < Ek < O.Ol ) , \  

a = 3, p =  y =CO (Ek 20.01). J (3.4) 

It is easy to see that in the limit p, y +oo the axial transformation (3.2) reduces to 
the identity Y(z)  = z ,  in other words no axial transformation is applied for Ek 2 0.01 
(and Rossby numbers Ro of order unity). 

We now consider the transformation of (2.11)-(2.13). In  terms of the new 
coordinates x and y defined above, the system is written in the following compact 
form : 

where 

Ro(J+;) v = Ek(L-$)  V ,  

Ro[(J-:) C-Kv] = Ek(L-$)C, 

(3.5) 

(3.6) 

(3.9) 

(3.11) 

(3.12) 

The functions R(x) and Z(y) are given by (3.3), and the velocity components u and 
w have been written in terms of the stream function lC., (2.10). The boundary 
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conditions in the transformed plane become 

I - ”= 0, v = saR(x),  $ = O  (y = 1 ,  0 < x d l ) ,  
aY (3.13) 

y = o ,  v = o ,  $ = O  (x=O,  O < y d l ) ,  

with a = QB/AQ. The discretization of the transformed system will be considered 
in 33.3. 

3.3. Discrete approach 
In the transformed plane the region of calculation is the unit square 0 < x ,  y < 1 ,  
which is covered by a uniform grid with mesh points (xi ,  yi) : 

1 xi = iAx, yi =jAy, i = 0(1) N,, j = 0(1) N,, 
(3.14) 

The majority of the calculations has been performed with Nx = Nu = 20 (441 mesh 
points). When considered in the original (r,z)-plane the grid may be highly non- 
uniform, depending on the values of the parameters in the transformation 
(3.1)-(3.2). To illustrate this we consider the case where the top disk is stationary 
(s = 0, Ro = 1)  and Ek = 0.001. With control parameters given by (3.4) it  is found 
that each disk boundary layer contains about 30 yo of the axial grid points - see figure 
16 in the appendix for a graphical representation. As for the radial mesh one finds 
that with N ,  = 20 the first interior mesh point has an r-coordinate rl = 02233, while 
the last interior radial point is at r19 = 0.9838. The need of a concentration of mesh 
points near r = 1 follows from the fact that in general radial gradients are much larger 
near r = 1 than near r = 0, where the solution is of von Karman similarity type (see 
appendix, figure 17). 

On the grid defined above we now consider the discretization of the governing 
equations (3.5)-(3.12). Two different discretizations have been employed, viz central 
and upwind differencing. In the central mode all derivatives in the governing 
equations are replaced by central differences, e.g. 

(3.15) 

and similarly for the derivatives with respect to y. The quantity Ti j  symbolizes the 
three unknowns v, 5 and $ at mesh point (xi, yi). 

In the upwind mode, upwind differencing is used to replace the first-order 
derivatives of v and yappearing in J(v)  and J ( f ) ,  (3.5) and (3.6) respectively; all other 
derivatives in the system (including derivatives of $ appearing in J )  are replaced by 
central-difference quotients. The differencing of J depends on the signs of the velocity 
components u and w in the usual way, e.g. aldx is replaced by a one-sided backward- 
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(forward-) difference quotient if u > 0 (u < 0), and similarly for a/dy, depending on 
sgn (w). An example is 

(u > 0, w < 0). (3.16) 

It is well known that upwind differencing influences the condition of the system 
of discrete equations in a favourable way, while the accuracy is less than in the central 
mode. During the initial stage of the numerical work we only considered the case s = 0 
(top disk stationary) and the central mode appeared to  behave in a satisfactory way. 
Later on the more difficult cases s < 0 (counter-rotating top disk) have been treated, 
and the central mode failed in the sense that the discrete solution procedure did not 
converge. With upwind differencing the failure was removed and converged results 
could be obtained. 

So far, we have considered interior mesh points (xi, y,) (0 < i < N,, 0 < j < N,) 
where the discretization produces 3 algebraic equations for the unknown quantities 
vij, Cij and $i j  a t  each point, and we now consider the boundary conditions. 

It will be clear from (3.13) that  the vorticity g is unknown a t  the disks y = 0 , l  
and a t  the cylinder sidewall x = 1 .  The discrete equations for the vorticity a t  these 
boundaries are obtained from (3.7) and the conditions (3.13) on the stream function 
$. At the bottom disk we then have 

(3.17) 

From Taylor expansion of $(x, Ay) the discrete representation is taken as (bottom 

@ i , j + l  = 0 (i = 0, 0 < i < N,). (3.18) 
disk) : 

Note that the condition d@/ay = 0 is implicitly contained in this equation. Discrete 
formulae for the vorticity at the top disk and the sidewall are obtained in the same 
way. The remaining boundary conditions (3.13) can be directly imposed, although 
v is discontinuous a t  x = y = 1, where the top disk meets the cylinder sidewall. I n  
the experimental arrangement (figure 2 )  there exists a narrow gap of width 
d = 20 mm (4 yo of the radius) near that  point. Since the gap is small and the value 
of v a t  the discontinuity does not enter into the numerical scheme we have ignored 
the gap during the initial stage of the investigation. Later on the boundary conditions 
across the gap have been replaced by (2.15). All numerical results presented in this 
paper have been obtained with the (2, y)-representation of the conditions (2.15) across 
the gap. 

2 
R(xi)  cij - A2yz2(0) 

3.4. Solution method of discrete equations 
The discretization presented in $3.3 results in a system of coupled nonlinear algebraic 
equations for the quantities vij, Cij and $ t j .  This system is solved with an alternating- 
direction implicit technique and Gauss-Seidel relaxation. The nonlinearity is treated 
by means of Newton iteration. Hence two nested iteration procedures may be 
distinguished in the solution method : a global iteration and an inner iteration. The 
organization of the global procedure is as follows. 
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( 1 )  Initialize flow field. 
(2) Perform axial cycle: axial(i), i = l ( l )Nz-  1.  
(3) Perform radial cycle : radial(&, j = 1 (1) N ,  - 1 .  
(4) Test for global convergence; if not satisfied return to (2). 
(5) Print solution. 

Here ‘axial(i) ’ means that all the unknown variables (including vorticity at the disks) 
along grid line i = constant are simultaneously solved by means of Newton iteration. 
With the results of this inner iteration the approximation to the solution along the 
grid line considered is then updated (after relaxation). During the axial cycle the 
vorticity a t  the sidewall is frozen. This quantity is updated during the radial cycle 
where now linesj  = constant are treated by means of radial($) in the same way as 
in the axial cycle, but this time with frozen vorticity a t  the disks. The execution of 
the axial and the radial cycle together will be called a global sweep. Upon execution 
of such a sweep all boundary conditions are felt by the solution over the entire domain 
of the calculation. The quantities a t  interior mesh points are updated twice during 
one global sweep, whereas the vorticity a t  disks and sidewall is updated once. 

3.5. Relaxation and convergence 
The Newton or inner iteration mentioned in $3.4 is ended if the maximum of the 
Newton corrections for all the unknown variables along the considered grid line is 
< lo-*. Owing to the quadratic convergence of the Newton method this bound is 
small enough and it is reached with 3 iteration cycles in the initial stage of the 
calculation. I n  the final stage of the calculation the number of Newton cycles for each 
grid line appeared to be 1 over the entire grid, indicating that global convergence 
was achieved. The test on global Convergence reads 

max IT@”) - T#”d)) < 10-4, (3.19) 

where T stands for v, ( and $, while Sw and Sw + denote the axial and the radial 
half-sweep respectively. 

To pass (3.19) underrelaxation appeared to  be required depending on the Ekman 
number and the mode of discretization. The central mode (used for s = 0) required 
a relaxation factor w = 0.5 at Ek = 0.01, while 0.25 was used at Ek = 0001. The 
upwind mode (s < 0) showed a better convergence behaviour and w could be taken 
more closely to 1 .  

($3) 

3.6. Checks on the numerical results 
To verify the quality of the numerical results and to  test the computer program 
several checks are available or have been developed. 

(i) Comparison with experimental results ($ 5). 
(ii) Comparison with von Karmcin similarity results (appendix). 
(iii) Grid re$nement. For some values of s solutions on two grids have been computed 

and can be compared ($5 and appendix). 
(iv) Analytic solution at large Ekman numbers. As Ek -+ 00 the solution is governed 

by linear equations, and the tangential velocity may be expanded in a series of Bessel 
functions (see Pao 1970, 1972). At an aspect ratio 6 = 0.07 the series of Bessel 
functions showed a poor convergence and hence this test has been performed with 
S = 1 .  Good agreement was obtained. 

(v) Vorticity integral. From the definition (2.10) of the vorticity ( it can be shown 
that 

r2[drdz = 0. 



132 D.  Dijkstra and G. J .  F. van Heijst 

Here V represents the entire volume occupied by the fluid. The vanishing of the 
integral over the meridional plane follows from (2. lo), the boundary conditions and 
integration by parts. In  the transformed plane the result becomes 

1 1  

R2(x) C(x, y) R’(x) Z’(y) dxdy = 0. Jz-o 5,-o 
The discrete evaluation of the integral is performed by means of a two-dimensional 
trapezoidal rule where positive and negative contributions to the trapezoidal sum are 
accumulated separately. Denoting these contributions by J(C+) and J(<-) respectively, 

J ( C + ) +  J ( C - )  = 0 (3.20) 
we should have 

in the limit Ax, Ay + 0. This check has been applied to every converged solution 
obtained ( $ 5 ) .  

4. Experimental arrangement 
Experiments have been carried out in the arrangement schematically shown in 

figure 2. The apparatus consists of two glass disks, which can be driven independently 
by variable-speed electromotors; the lower disk is fixed to a massive steel ring, 
supported by roller bearings, which acts as the cylinder sidewall. The diameters of 
the cylinder and the top disk are respectively 1000 and 960mm indicating that 
the width d of the gap between top disk and sidewall is 20 mm. The distance H 
between the disks can be adjusted continuously in the range 10-100 mm. During the 
present experiments the distance was fixed at 35 mm, implying that the aspect ratio 
S has a constant value 007.  The angular speed of the disk can be varied continuously 
in the ranges 0.1-30 r.p.m. (bottom disk) and 0-60 r.p.m. (top disk). For experiments 
in the range 200 < Re* < 1000 the cylinder was filled with ordinary tap water; for 
smaller Re* values we used a water/glycerol mixture, thus increasing the kinematic 
viscosity of the working fluid. 

The method of measuring the radial, azimuthal and axial velocity components of 
the flow is based on the principle of stereophotography, which enables one to 
determine the position of a point light source (object point) in three-dimensional 
space. A set of two cameras is used to take simultaneous pictures of the object point 
P as well as of two fixed reference points ( A  and B) ,  the positions of which are known 
exactly. The coordinates of the projected object point are measured from both 
photographs and are related to a common coordinate system defined by the reference 
points A and B,  thus yielding the points Pl and P2 (see figure 3). Since the camera 
view directions are fixed relative to this common reference system, these points Pl 
and P2 on the lower reference plane correspond to certain points Pi and Pi respectively 
on some upper plane of reference. Once the transformation of an arbitrary point X 
on the lower plane to its corresponding projection X on the upper plane of reference 
is exactly known (for fixed camera positions), the coordinates of Pl and Pz yield the 
directions Pl + Pi and P2 -+ Pi respectively. In  consequence, the spatial position of 
the original object point P (being the intersection point of PIP; and P2Pi)  is 
completely determined. 

In order to determine fluid velocities, small polystyrene spheres (of diameter 
0 3  mm) are added to the fluid, and by dissolving sodium chloride the density of the 
working fluid is adjusted in such a way that the small particles are neutrally buoyant. 
Because of their small size the particles move with the surrounding fluid. It is essential 
that the concentration of tracer particles is low enough to be able to distinguish 
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FIGURE 2. The experimental configuration (dimensions in mm). 

t-=z L = 500 

FIGURE 2. The experimental configuration (dimensions in mm). 

- Driving belt 

Bearings 

FIGURE 3. Diagram to illustrate the principle of stereophotography. 

between the movements of individual particles. The particle motion is visualized by 
means of a stroboscope producing a number of short light flashes of adjustable 
frequency. The polystyrene spheres reflect this flash light brightly, and each 
individual particle acts as a point light source. Each particle path is thus defined by 
a number of successive ‘reflection points’ (see figure 4), and by stereophotography 
the position of these points can be determined accurately. When the flash frequency 
is known, the distance between two succeeding points on a particular line contains 
information about the particle velocity along its path. By making the time between 
the first and second flashes slightly different one is able to  discriminate between head 
and tail of the particle trajectory. I n  this way we can determine the direction and 
magnitude of the local fluid velocity. Since the measuring procedure is time-absorbing 
it has been automated as far as possible. When photographs have been made for a 
certain flow configuration, an electronic coordinate reader (originally designed for 
aerial-survey purposes) is used to determine the coordinates of the projected points 
accurately. These data are put on punch or magnetic tape, from which a computer 
calculates local velocities for every observed particle path. In  this way fluid velocities 
can be determined within an accuracy of 1 mm/s. This experimental error is 
sufficiently small for accurate measurement of the azimuthal and radial velocity 
components. Since the order of magnitude of the axial velocity component is 
comparable to the experimental error, however, determination of this velocity 
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FIGURE 4. By means of a stroboscope each particle path is defined by a number of dots. 

component leads to unacceptable relative errors of 1 0 0 ~ o ,  and must therefore be 
rejected. 

In the case of counter-rotating disks (s < 0) a stagnation point arises at the slowest 
rotating disk, as will be discussed below. This stagnation point can easily be visualized 
by adjusting the fluid density (i.e. the NaCl concentration) in such a way that the 
tracer particles become slightly buoyant or slightly heavier than the working fluid : 
for suitably chosen density adjustment, these particles crowd together a t  the 
stagnation point, thus producing a clearly observable ring. 

5. Numerical and experimental results 
5.1. General remarks 

Numerical calculations as well as experiments have been performed for two distinct 
cases: (i) one disk stationary (55.2); (ii) disks rotating in opposite senses (555.3 and 
5.4). For convenience of description we define the inverse rotation ratio c as 

When the top disk rotates faster than the bottom disk, i.e. Is( > 1, the parameter c 
will be used. 

The behaviour of the numerical procedure is illustrated in table 1 ,  where some 
global properties of the numerical calculations have been listed. In this table ‘central, 
21 x 21 ’ means central-differencing over a grid with 21 mesh points in both directions 
($3). The quantities J ( [ + )  and J(C-) denote the positive and negative contribution 
to the vorticity integral (53.6); the sum of these two quantities should vanish 
according to (3.20). Further, Sw gives the number of global alternating direction 
sweeps required to pass (3.19), whereas ‘Time’ denotes the seconds CPU time on a 
Dec-10 computer using Algol-60. 

It should be noted that one global sweep involves twice the updating of 3 unknowns 
at  each interior mesh point (53.4). The grid refinement a t  s = -0.3 shows that the 
magnitude of the vorticity integral reduces considerably, as i t  should. However, more 
cycles on theJiner grid appear to be required, and the resulting CPU time grows in 
an alarming manner when grid refinement is employed. It is believed that the present 
iteration technique can be improved significantly (e.g. by means of multigrid 
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s Elc Numerical method J(b+) - J ( [ - )  J({+)+J(<-)  Sw Time (9) 

0 0001 Central, 21x21 005724 005613 +0001l l  - - 

- 0 3  001 Upwind, 21x21 004356 0.04395 -000038 63 180 
- 0 3  001 Upwind, 41 x41 004467 004490 -000023 225 2800 
-06  001 Upwind, 21x21 0.04235 004270 -000035 110 400 
-0825 001 Upwind, 21 x21 0.04592 004624 -000032 215 800 

TABLE 1. Global characteristics of numerical procedure for a few cases 

methods). Finally i t  should be noted that the number of sweeps Sw grows as s 
decreases towards - 1. An explanation of this feature will be given in $5.4. 

5.2. One disk stationary (s = 0 and a = 0) 

For Ekman numbers Ek in the range 0*001-0*02 both possible cases a, = 0 (s = 0) 
and !& = 0 (a = 0) have been investigated experimentally. Numerical calculations 
have only been performed for the case s = 0 and Ek in the range 0.001-1. 

Figure 5 shows numerical results for streamfunction $, vorticity g and azimuthal 
velocity w a t  Ek = 001 (s = 0), while corresponding graphs a t  Ek = 0001 are 
presented in figure 6. Qualitatively the results are in agreement with the ones 
calculated by Lugt & Haussling (1973) taking the differences in aspect ratios into 
account. 

It should be noted that throughout this paper the value of the cylinder aspect ratio 
is S = 0.07 for experiments as well as numerical work, but for graphical resolution 
the axial scale in the figures has been blown up. It turns out that  variation of Ek 
from 0.01 to 0.001 does not affect the flow character dramatically. The major 
modification takes place in the disk boundary layers, which thicken with increasing 
Ekman number. At Ek = 0001 viscous effects are mainly confined to the disk 
boundary layers and a layer a t  the cylinder sidewall. The smallness of the disk 
boundary-layer thickness (x (Ek);) imposes severe demands on the grid used in the 
numerical work : a numerical exercise a t  Ek = 0-001 with a uniform axial grid revealed 
the presence of grid oscillations in the converged solution ; the oscillations disappeared 
completely when the transformation in axial direction was activated ($3.2). The effect 
of the transformation is illustrated in the appendix (figure 16). 

The main character of the flow a t  s = 0 will now be outlined. Owing to the 
centrifugal action of the rotating disk, fluid flows from the top to the bottom disk. 
The disk boundary layers carry the fluid radially outwards over the bottom disk and 
inward along the stationary upper disk. In  the shear layer a t  the sidewall fluid moves 
upward. Figure 6(c) reveals that  a substantial part of the fluid outside the disk 
boundary layers is rotating in agreement with Batchelor’s (1951) predictions for 
infinite disks. 

Figure 7 shows some characteristic tangential-velocity profiles a t  Ek = 0.001 ; 
experimental data are depicted by dots. Because the tracer particles used in the 
experimental work are randomly distributed in the working fluid, i t  is unlikely that 
several particles are present on a given radius when a photograph is taken. Therefore 
the experimental data are arranged in small radius intervals Ar = rmax - rmin. I n  order 
to  compare with experimental data, the numerical results are drawn for values as 
close as available near rmin and rmax. It may be seen from figure 7 that the 
experimental values of the tangential velocity are in perfect agreement with the 
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FIGURE 5. Numerical results for s = 0, Ek = 001 : (a )  streamlines lo4$ = 25(25)175; ( b )  lines of 
constant vorticity; (c) lines of constant azimuthal velocity w = 01(@1)09. 

numerical data ; good agreement is also found in the radial-velocity component (not 
displayed). The axial velocity resulting from the numerical calculations cannot be 
compared with experimental data since the latter are not available : the error in the 
experimental values is of the same order as the magnitude of the axial velocity 
component. Further information on the axial velocity may be found in the appendix. 

The influence of the sidewall is illustrated in figure 8, where the azimuthal velocity 
v in the bulk (i.e. outside disk-boundary layers) is displayed for the cases 5 = 0 and 
r . ~  = 0 (at Ek = 0*001). In  the central core of the flow region, the swirl velocity is seen 
to be a linear function of the radius r :  v = 0.33r for the range 0 < r < 0.5 (at 5 = 0). 
This is in agreement with von KLrman’s similarity hypothesis for infinite disks; in 
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FIQURE 6. Numerical results for s = 0, Ek = 0.001 (sharp corners are due to the mesh-point 
distribution): (a) streamlines lo4+ = 10(10)50; (b) lines of constant vorticity; (c) lines of constant 
azimuthal velocity v = 01(01)09. 

the limit Ek + 0 this hypothesis yields for the Batchelor solution: v = 0313r  at s = 0, 
outside boundary layers (see also the appendix). 

Owing to the presence of the cylinder sidewall this linear behaviour with r cannot 
persist up to r = 1, where the boundary condition on v dictates that v = 1 for s = 0, 
and v = 0 for CT = 0. In the latter case where the bottom disk and the sidewall are 
stationary, only experimental data are available and it may be seen from figure 8 
that the linear behaviour of the swirl velocity holds over a larger range (0 6 r < 0.75) 
than in the case s = 0. Obviously this effect is caused by the non-rotating sidewall. 
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FIGURE 7 .  Comparison between results for the tangential velocity at s = 0, Ek = 0901 : -, 
numerical results; 0, experimental values. (a) rmin = 0.36, rmsx = 045; ( b )  rmin = 084, r,,, = 087. 
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FIGURE 8. The swirl velocity v(r, z) at the midplane z = 0 5  for the case s = 0, Ek = 0001 : + , 
numerical data; 0, experimental values. 0, experimental values at v = 0, Ek = 0001. Note the 
linear behaviour at moderate radii. 

5.3. D i s h  rotating in opposite senses 

For counter-rotating disks numerical results have been obtained a t  Ek = 0.01 for 
several values of s in the range 0 > s > -0.825. The numerical method for these cases 
uses upwind differencing with 21 x 21 grid points. At s = -0.3 grid refinement 
revealed that the error in the solution on the coarse grid was of the order of 10% 
or less. A comparison between the results for the two grids may be found in the 
appendix (figure 17). 

The flow structure will now be considered for two selected values of s, viz s = - 0 3  
and s = -0825. 
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FIGURE 9. Numerical results for s = -0.3, Ek = 001 : (a) streamlines lo4$ = -3(1)1, 2.5, 5 ,  10, 
50, 100; ( b )  lines of constant vorticity; ( c )  lines of constant azimuthal velocity v = -0.1(0.1)07. 

5.3.1. The ca.se s = -0.3 (Ek = 0.01). Figure 9 shows numerical results for +, 6 
and v, and i t  reveals a remarkable feature of the flow at  negative s-values: the flow 
in the meridional plane has a two-cell structure. The dividing stramline 21. = 0 ends 
at the upper (slower-rotating) disk, thus forming a stagnation point in the meridional 
plane at rst = 0.67. In  the experimental arrangement this point corresponds to a 

The two-cell structure may be explained on the basis that the faster-rotating disk 
dominates the flow behaviour : the outward radial fl6w over the bottom disk induces 
a downward axial interior flow. At the sidewall a thin layer carries fluid vertically 

' stagnation ring at the upper disk. 
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FIQURE 10. Comparison between results for the radial (u, b )  and the azimuthal ( c ,  d )  velocities at 
8 = -03, Ek = 001 : -, numerical results; y,  experimental values. (a, c) rmin = rmaX = 041 ; (b ,  d )  
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rmin = 074, r,,, = 078. 

upwards, which results in an inward radial flow along the slower-rotating upper disk. 
Near the axis of rotation, however, the upper disk produces an outward radial flow 
which meets the inward radial flow at the stagnation point, where the fluid must flow 
downwards along the dividing streamline @ = 0 (figure 9a). Figure 9(c) shows that 
the upper and lower parts of the fluid rotate in the same sense as the upper and lower 
disks respectively. It is worth noting that the dividing line v = 0 between the 
'swirl-velocity cells' does not coincide with the dividing streamline I++ = 0 for this 
value of 8.  

Numerical and experimental profiles of the tangential and radial velocity are 
presented in figure 10 at two selected values of the radius. Again it is seen that there 
is good agreement between experimental data and numerical results. At small or 
moderate values of the radius, as figure lO(c) reveals, the swirl velocity changes 
continuously from the lower to the upper disk, reversing approximately a t  the 
midplane; however, at larger radii (figure 10d)  a substantial part of the fluid rotates 
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FIGURE 11. Numerical resultsfors = -0.825, Ek = 001 : (a )  streamlines lo4+ = -50( 10)80; ( b )  lines 
of constant vorticity; (c) lines of constant azimuthal velocityv = -04, -03, -0.2, -0125,0 ,015 ,  
02(01)05. 

in the same sense as the bottom disk, indicating a Batchelor type of flow sufficiently 
far from the axis of rotation. The nature of the flow at smaller radii seems to be of 
Stewartson type (virtually no rotation outside the disk boundary layers). For further 
comment with regard to this feature see $5.4 and the appendix. 

It may be seen from figure 10 that the tracer particles were apparently slightly 
lighter than the working fluid, so that only a few particles were left in the bottom-disk 
boundary layer. 

5.3.2.  The  case s = -0.825 ( E k  = 0.01). Numerical results for s = -0.825 are 
shown in figure 11,  and it  is clear that  the influence of the top disk has grown 
significantly as compared with the case s = - 0 3 .  The stagnation point is now a t  
rst = 0.94, and it  follows that its location depends strongly on s. Note that the gap 
(figure 2 )  between top disk and cylinder sidewall occupies the range z = 1 ,  
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0.96 < r < 1 ,  so that the stagnation point has almost entered the gap. It is probably 
for this reason that no reliable results (either numerical or experimental) have been 
obtained in the range - 1 < s < -0.825. The numerical procedure failed to converge 
in this range, and at the same time wavelike instabilities appearing in the experimental 
arrangement near the sidewall prevented further accurate measurements. I n  addition 
i t  should be remarked that no observations could be made of the flow near the gap 
x = 1 ,  0.96 < r < 1 .  This was caused by the presence of a steel ring supporting the 
bottom disk. Measurements could only be performed up to about 3 cm from the 
sidewall. 

From figure 11 (a ,  c )  the lines y? = 0 and v = 0 appear to be coincident, except near 
r = x = 1. Note also the symmetry about the midplane over the range 0 < r < 0.8. 
Although even a t  s = - 1 the flow pattern cannot be exactly symmetrical about the 
midplane (since the sidewall is fixed to the bottom disk) i t  is clear that  there is a strong 
tendency to this symmetry over the major part of the region occupied by the fluid. 
This property is further illustrated in figure 12, where numerical results for radial 
and tangential velocities are shown. Experimental data for the values of the 
parameters considered are not available, so that no comparison can be made. 

At small radii the tangential velocity (figure 12c) changes continuously from lower 
to  upper disk, similar to the case s = - 0 3 ;  however, the swirl velocity profile a t  larger 
radii (figure 12d) seems to  indicate the presence of a transition layer a t  the midplane. 
The cells on both sides of this layer rotate with equal but opposite angular velocities. 
This type of flow has been predicted by Batchelor (1951), but it should be remarked 
that profiles with a transition layer are encountered in the present work a t  radius 
values where the similarity hypothesis does not hold. 

5.4. Xtagnation point 
The main characteristic feature of the flow for the case of counter-rotating disks 
(s < -0.1) enclosed by a cylinder is the appearance of one single stagnation point a t  
the slower-rotating disk. Associated with the stagnation point there is a two-cell 
structure in the meridional plane as shown in 35.3. 

For a confined configuration a two-cell structure has been reported by Lugt & 
Haussling (1973). They calculated numerical solutions at an aspect ratio 6 = 1 and 
obtained a two-cell structure a t  Ek = 0.01 for some values of s down to -9. For 
s c -9 (a > - 0 1 1 )  the flow had achieved a single-cell pattern again. These results 
are in agreement with the present investigation as will be shown below. 

For several values of s in the range - 0.1 > s > - 0.825 and Ek = 0.01, the location 
rst of the stagnation point has been calculated. Experimental evidence is obtained 
by adding small buoyant particles to the working fluid in order to visualize the 
formation of a stagnation ring at the slower-rotating upper disk (s > - 1) .  Because 
of their smaller density the particles are pressed against the top disk, where radial 
forces cause them to move towards the stagnation point (see figures 9 and 11) .  I n  
the stationary situation the particles thus form a ring a t  the top disk and move with 
this disk in the tangential direction (see figure 13). By means of particles of larger 
density, the stagnation ring a t  the bottom disk (s < - 1)  can be visualized similarly. 

Although the thickness of the ring increases as Is( becomes smaller, the radius rst 
of the particle ring can be measured accurately. Experimentally, the location of the 
ring is found to possess a high degree of reproducibility independent of the starting 
conditions. From the experiments it also appears that  the formation time for the 
particle ring to  settle down, strongly increases as rst 0: a t  EE = 0.01 the formation 
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FIGURE 12. Numerical results for the radial (u, b )  and the azimuthal (e, d )  
velocities at s = -0.825, Ek = 0.01 : (u,  c )  r = 0652;  ( b , d )  T = 0848. 

time is about 5 min for rst = 0 9  (s = -0.7), but approximately 2 h for rst = 0.2 

Experimental and numerical results for the case Ek = 0.01 are shown in figure 14, 
and it is clear that  there is satisfactory agreement. 

Despite the presence of a free surface (or gap) a t  z = 1 ,  0-96 < r < 1, figure 14 
reveals that rst --$ 1 as s + - 1. However, experiments a t  s = - 1 revealed an unstable 
flow near the sidewall (wavelike instabilities over the free surface) so that no particle 
ring could be observed. 

Experiments in the range s < - 1 ( -  1 < u < 0) showed a behaviour of the 
stagnation ring similar to the case s > - 1, but now a t  the bottom disk : starting from 
CT x -015 to u = - 1 the radius rSt increases, as may be seen from figure 14. 

In  the range -0.1 < s, u < 0 no particle ring has been obscrved, not even several 
hours after starting the flow. Apparently, the relative amount of counter-rotation, 
measured by Is1 or lul, must exceed a certain value in order that  a stagnation point 

(S = -0.15). 
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FIGURE 13. An example of the stagnation ring appearing in the experimental configuration. 
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FIGURE 14. The location rst of the stagnation point for various rotation ratios at Ek = 001 : + , 
numerical values at top disk ( -  1 < s < 0);  0, experimental data a t  top disk ( -  1 < s < 0); 0, 
experimental data a t  bottom disk ( -  1 < CT < 0). 

may appear. This is also in agreement with the results reported by Lugt & Haussling 
(1973). For more details on this feature see the appendix. 

Additional experiments have been performed for Ek + 0.01, and the results are 
shown in figure 15, where rst has been plotted versus log Re* = -log Ek for several 
values of s. In  the range - 0.7 < s < - 0.4 the position rst of the stagnation point is 
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FIQURE 15. The position of the stagnation point rSt versus Reynolds number Re* = l / E k .  
Experimental values in the range - 1 < s < 0. Parameter on curves is 191. 

seen to decrease with increasing Re*, but at smaller values of Is1 a maximum appears 
near Re* x 100. This means that (for the lower Is1 values), starting from Re* = 50 
the stagnation ring shifts radially outward until a maximum is reached at Re* x 100; 
increasing Re* beyond 100 causes the ring to  shrink again towards a final position 
a t  large Re*. 

The present laboratory arrangement did not permit reliable experiments for 
Re* < 50, because of small instabilities in the driving mechanism, but future work, 
supported by numerical calculations, could possibly reveal some interesting features 
of the flow in this regime. 

It is worth making a final comment on the additional experiments described above. 
A t  s = -06, Re* = 1000 and s = -0.45, Re* = 500 experiments have revealed the 
presence of Stewartson profiles over a significant range 0 < r < 0 6  : in this range the 
azimuthal velocity virtually vanishes outside the disk boundary layers. However at 
s = -0.15, Re* = 500 a definite bulk rotation was observed, indicating the presence 
of a Batchelor profile. In 55.2 we have shown that at s = 0, Re* = 1000 the flow near 
the axis of rotation is also of Batchelor type and it follows that for the present 
confined geometry either Stewartson or Batchelor profiles are relevant at large values 
of Re* in a neighbourhood of the axis of rotation. Which profile actually appears 
strongly depends on s and therefore on the location of the stagnation point. 

6. Conclusions 
When the top disk is stationary ( s  = 0 ) ,  calculations and experiments show that 

a substantial part of the fluid outside the disk boundary layers is in solid-body 
rotation, in agreement with Batchelor's (1951) predictions for the flow between 
infinite disks. 

When the disks rotate in opposite senses with s < -015, the flow in the meridional 
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plane appears to have a two-cell structure similar to that calculated by Lugt & 
Haussling (1973). The dividing streamline @ = 0 between both cells ends a t  the 
slower-rotating disk, thus forming a stagnation point. I n  physical reality this point 
corresponds to a stagnation ring at the slower-rotating disk; its existence has been 
demonstrated both numerically and experimentally. The location of the ring depends 
on the parameters s and Re". It has been computed for several values of s, and the 
results are in good agreement with experimental observations. Experimentally the 
stagnation point possesses a high degree of reproducibility, independent of the 
starting conditions. I n  the range -0.15 < s < 0 no stagnation ring has been 
observed, and a mathematical argument for this feature (on the basis of similarity 
equations) has been put forward. 

As s decreases towards - 1 ,  the computed flow pattern away from the cylinder 
sidewall tends to a symmetrical two-cell structure: upper and lower cells rotate in 
the same sense as the adjacent disk, and at the midplane the swirl velocity changes 
sign. Although the Reynolds number is not very large (Re* = 1/Ek = loo), the 
numerical results seem to indicate the existence of a viscous transition layer between 
both cells, sufficiently far away from the axis of rotation. Profiles with a transition 
layer have been predicted by Batchelor (1951), but a t  the radii where transition layers 
are encountered in the present investigation the similarity demands are not satisfied. 
Near the axis of rotation, however, the similarity transformation is valid indeed, and 
the solution is more in agreement with a Stewartson profile provided that the 
counter-rotation is sufficiently strong: later experiments a t  Re* = 1000 and s = -0.6 
have revealed that in the range 0 < r < 0.6 the angular velocity virtually vanishes 
outside the disk boundary layers. 

On the basis of material presented in this paper, we conclude that (depending 
mainly on s) either Batchelor or Stewartson profiles are adequate for the description 
of a part of the flow in a confined configuration such as the present one. In  addition we 
conclude that for arrangements with a sidewall all higher-branch similarity solutions 
as calculated by numerous authors are unlikely to occur in physical reality: the 
cylinder sidewall eliminates all higher branch possibilities. 

We wish to thank Kees Dijkstra, Rob Uittenbogaard, Miel Engelberts, Roe1 Omta 
and Toon Holtslag for their valuable contributions to  the experimental set-up and 
for carrying out many experiments. Concerning the numerical computations and 
software development we are much indebted to  R e d  van der Rest and Herman Smit, 
who also produced many of the figures. We also wish to thank one of the referees 
for bringing the Picha & Eckert (1958) paper to our attention. 

Appendix. Similarity considerations 
The purpose of this appendix is to present a comparison of the results obtained 

for the confined geometry with data calculated on the basis of the similarity 
equations. 

It is found that the region where the von KLrman similarity equations govern the 
flow depends strongly on the position of the stagnation point. At s = 0, Ek = 0.001 
there is no stagnation point and over 50 yo of the radius the flow is of similarity nature 
(Batchelor type). At s x -015 a stagnation point appears near T = 0 at the top disk, 
and the region where the similarity equations hold is very small, while i t  grows again 
if the stagnation point moves outward, i.e. s + - 1 .  In  this case the relevant similarity 
solution is of Stewartson type for Ek small enough. I n  addition i t  is found that - in 
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general - the agreement between the similarity data and the results for the confined 
cylinder is better near the faster-rotating bottom disk than near the slower-rotating 
top disk ( -  1 < s < 0). This may be explained by the intuitively clear assumption 
that the faster-rotating disk dominates the flow ( $ 5 . 3 ) .  Hence the flow near the 
slower-rotating disk is much more affected by the presence of the radial boundary. 
Along the sidewall, fluid moves towards the slower-rotating disk and subsequently 
inward over that disk (or part thereof). Prom papers by Nguyen et al. (1975) and 
Holodniok et al. (1977,1981) i t  is known that the similarity equations for the two-disk 
problem have non-unique solutions if the Reynolds number is large enough. At 
Re* = 625 for instance, Holodniok et al. (1981) calculated a multiplicity of similarity 
solutions for several values of s. However, it  will be shown in §§A 2 and A 3 that  of 
this multiplicity of solutions only two branches are relevant to the present confined 
problem. I n  terms of the nomenclature developed by Holodniok et al. these branches 
are branch 1 (Batchelor-type) and branch 8 (Stewartson-type). 

Therefore we believe that the original papers by Batchelor (1951) and Stewartson 
(1953) are still of fundamental relevance to rotating flows in confined containers. 

A.l. Similarity equations and method of solution 
Since numerical results for the confined geometry have been calculated in the range 
- 1 < s < 0, we will consider only this range of s-values so that a, > lRTl. The 
parameters appearing in (2.1)-(2.9) are then given by 

In terms of the stream function 11. and the tangential velocity v the von KBrman 
similarity hypothesis may be written in the form 

11. = r2f(z), v = rg(z). (A 2) 

u = r f (z ) ,  w = -2f(z), [ = rf”(z). (A 3) 

The remaining quantities of interest then follow from (2.10), viz 

Substitution into the governing equations (2.11)-(2.13) produces the following 
ordinary differential equations : 

e y  + 2ff + 299‘ = 0, 

2g” + 2fg’ - 2fg = 0 

(2 = Ek/Ro ,  ’ = d/dz) ,  with boundary conditions a t  the disks from (2.14): 

g(l) = sa = G‘ 1 
g(0) = a = ~ 

1 -s’ 

The proposed structure (A 2), (A 3) satisfies the boundary conditions along the axis 
r = 0, but the conditions (2.14) a t  the sidewall r = 1 are violated so that the similarity 
solution will deviate from the true solution of the confined problem in a certain 
neighbourhood of r = 1. In  fact the region of validity of similarity assumptions may 
be better described in terms of the stagnation point (see the introductory lines of this 
appendix). 

We now consider the numerical method that has been used to solve the equations 
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(A 4). Note that the equation for f may be integrated once, whence (A 4) becomes: 

1 €y”’ + 2ff” -pa + g2 = c, 
€2g“+2fgT-2fq = 0, 

where C is a constant independent of z.  
The equations (A 6) with boundary conditions (A 5 )  have been solved with a 

finite-difference method and Newton iteration to cope with nonlinearity. I n  fact the 
finite-difference procedure developed by Zandbergen & Dijkstra (1977) for solving 
single-disk problems appeared to be suitable for the present two-disk problem as well. 
The only modifications consisted of a rescaling and an additional iteration loop on 
the constant Cin (A 6).  For a single-disk problem Cis apriori known, but for a two-disk 
problem it has to be determined along with the solution. For further details 
concerning the finite-difference technique and the Newton iteration see Zandbergen 
& Dijkstra (1977). 

A.2. Comparison between results for the confined configuration and results 
based on similarity considerations 

I n  this subsection we compare the numerical results obtained from the similarity 
equations ( A 5 )  and ( A 6 )  with the results calculated for the confined geometry 
described elsewhere in this paper. For the sake of brevity we restrict ourselves to the 
values of s selected in $55.2 and 5.3, viz s = 0, -0-3 and -0.8. 

A.2.1. The case s = 0 (figure 16). For a stationary top disk and Ek = 0.001 
(Re* = 1000) axial distributions of the tangential and radial velocities are presented 
in figure 16 (a) ,  while figure 16 (b)  shows the axial velocity and the vorticity. The value 
of r at which the results are depicted is r = 0.2233, which is the first grid line 
r = constant to  appear near the axis r = 0 in the confined calculations with 21 x 21 
mesh points ($ 3.3). The confined results have been obtained with central differences, 
and half of the axial mesh points are presented in the figures. Note the non-uniform 
distribution of these axial mesh points, which shows the effect of the transformation 
(3.2). The full lines are the profiles obtained with the similarity equations. I n  order 
to be sure that the similarity results are sufficiently accurate much more mesh points 
have been used as compared with the axial grid for the confined solution. 

From the behaviour of the profiles and the perfect agreement between the results 
of the two calculations the following conclusions can be drawn. 

(i) The transformation (3.2) has the desired effect, namely to furnish mesh points 
where they are required. 

(ii) The von Karmin similarity hypothesis predicts a flow which is in perfect 
agreement near the axis of rotation with the real flow in a confined container. 

(iii) At s = 0 and large Re*, all quantities displayed in figure 16 are constant outside 
the two disk boundary layers. 

It will be clear from figure 16 that  the flow in the case s = 0 is of Batchelor type. 
In his paper Batchelor (1951) has put forward an interesting argument on the basis 
of which the velocities in the bulk can be calculated from two basic single-disk 
similarity solutions. The value of the tangential velocity in the bulk should be such 
that the axial velocities predicted by the two associated single-disk boundary-layer 
similarity solutions are the same. The present authors were in the possession of these 
latter solutions so that we could carry out this match. We obtained in the bulk region 
between the disks 



Flow between rotating disks enclosed by  a cylinder 

__j u/r (radial) 

-0-15 -0.12 -0.09-0.06 -0.03 0 0.03 0.06 0.09 0.12 0.15 

0 0.2 0.4 0.6 0.8 1.0 

149 

V / U ~  (tangential) 
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FIGURE 16. Comparison between numerical results a t  r = 0.2233, s = 0, Ek = 0.001 ; E = EkI, 
vB = v a t  bottom disk: -, similarity solution; 0,  0, full partial differential equations, grid 
21 x 21 (half of axial mesh points shown). ( a )  radial and tangential velocities; ( b )  axial velocity and 
vorticity. Note the non-uniform distribution of axial grid points. 

where QB denotes the angular velocity of the bottom disk and e = 1/Re*? = Ekj. 
These results are in perfect agreement with the values presented in figure 16. 

A.2.2. The case s = -0.3 (figure 17) .  For values of s < 0, the calculation of the 
confined solution as described in § 3.3 uses upwind differencing. Consequently, the 
error may turn out to be larger than in the central mode used a t  s = 0. 

The case s = - 0 3  is of particular interest, since in this case numerical solutions 
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- r  

FIGURE 17. Bottom-disk vorticity divided by r for s = - 0 3 ,  Ek = 0.01 : ---, grid 41 x 41 ; 0. grid 
21 x 21. rst = r-coordinate of stagnation point at top disk. Note the position of the computational 
coordinate z = 0 5 .  

have been computed with two grids, namely 21 x 21 and 41 x 41. We select the radial 
distribution of the bottom-disk vorticity for the present comparison (figure 17) .  
According to similarity principles, (A 3), the vorticity when divided by r should be 
constant for z = constant. From figure 17 it  will be clear that this is correct for [ ( r ,  0) 
up to r = 0.6. It should be remarked that the top-disk vorticity [ ( r ,  1 )  (not displayed) 
also shows agreement with the similarity value, but over a smaller interval of the 
radius. This is caused by the presence of a stagnation point at the top disk ( r  = rst) 
where [ ( r ,  1 )  changes sign. 

Note the position of the computational coordinate x = 0.5 in figure 17.  This shows 
the effect of the radial transformation ($3.2). Further note that the results for the 
fine grid 41 x 41 near r = 0 are significantly closer to the similarity solution than the 
results obtained with the 21 x 21 grid. The error in the latter vorticity results is about 
10 yo. Richardson extrapolation reduces this error level to 1 yo (see 5A.3). 

A.2.3. The case s = -0.8 (figure 18). At Ek = 0.01 and s = -0.8 axial profiles of 
the tangential and the axial velocities are compared with the similarity results in 
figure 18. Again good agreement is obtained. The profiles at r = 0.2233 strongly 
suggest a Stewartson type of solution, although the Reynolds number (Re* = 100) 
is not large enough to show this more rigorously. However, later experimental 
measurements have revealed that for strong counter-rotation and Re* = 50@-1000 
the tangential velocity in the bulk virtually vanishes, while the radial velocity is 
negative and almost constant in the region between the boundary layers. This is 
completely in agreement with predictions by Stewartson (1953). 

The dotted curve in figure 18 represents the tangential velocity a t  r = 0*8881, which 
shows an interior transition layer as predicted by Batchelor (1951). However, at this 
value of r the similarity demands are not satisfied (see also $5.3). Nevertheless we 
may conclude that the rotating flow in the confined geometry a t  strong counter- 
rotation contains both Stewartson and Batchelor profiles, united together in one 
solution of the full partial differential equations. 
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- w / e  (axial) a u/ue (tangential) 

FIGURE 18. Comparison between numerical results for axial and azimuthal velocity; s = -08, 
Ek = 001, Ro = 1.8, E = (Ek/Ro)i ,  vB = v a t  bottom disk: -, similarity solution at r = 0.2233; 
0, 0, full partial differential equations (21 x 21 grid), r = 0.2233; ---, tangential-velocity profile 
a t  r = 08881 (21 x 21 grid). 

A.3. Xtagnation point 

I n  $5.4 the location rst of the stagnation point has been investigated. If we only 
consider the range - 1 < s < 0 the stagnation point (if any) is located at the 
slower-rotating top disk. Consider figure 14, which shows the position rst of the 
stagnation point for various values of s a t  E k  = 0.01. These results strongly suggest 
that rSt will vanish a t  a certain value s = sst: 

s = sSt e rst = 0. (A 7) 

In  fact figure 14 indicates that the vanishing of rst will take place with (Is-sstl)i as 
s + S,t. 

Further support for this behaviour has been obtained in additional experimental 
and numerical work. The value s = sSt is important since it characterizes the global 
flow structure in the meridional plane for a given Ek-number as follows: 

s > sSt * no stagnation point = one-cell structure, 

- 1 < s < sSt 3 stagnation point at top disk (rSt =I= 0) => two-cell structure. 

At E k  = 0 0 1  the value of sSt predicted by figure 14 is about -0.12. I n  the cr-range 
- 1 < (T < 0 (slower-rotating bottom disk) the same numerical value is obtained. 
Hence the value of sSt is not (or is only weakly) influenced by the sidewall. Lugt & 
Haussling (1973) reported transition from one- to two-cell structure a t  E k  = 0.01 for 
(T = - 0 1  1. They investigated the geometry with an aspect ratio S = 1, and since the 
present aspect ratio is 0.07 i t  follows that the transition value sst is independent of 
the aspect ratio S for a wide regime of values. At the same time this implies that the 
disappearance of the stagnation point should be predictable by similarity consider- 
ations. To see this we consider the top-disk vorticity c(r ,  1) when there is a stagnation 
point a t  that disk. For r = rst the top-disk vorticity vanishes and it also vanishes a t  
the axis r = 0 by virtue of the boundary conditions (2.14). Hence 

5(0,1) = [(yst, 1 )  = 0. 
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TABLE 2 

zo = zero of f(z) 
Confined Similarity 

None 
- 

- 

None 
None 
093 

074 
066 
054 
052 

- 

None 
None 
None 
None 
None 

0.76 
068 
061 
0 5  1 
049 

- 

Now, as s + sSt we have rst + 0, which means that [ ( r ,  1 )  must have a double zero 
at  r = 0 in the limit s + sSt. In other words 

[(0,1) = - (O,  1 )  = 0 (s = SsJ. ar 

If the extra condition on the derivative is applied to the similarity representation 
(A 3) we find 

f(1) = 0 (s = Sst). (A 8) 

This condition also follows from an argument based on streamlines. Consider the 
dividing streamline @ = 0 in figure 9(a ) .  It originates a t  the stagnation point 
( r ,  z )  = (rst, 1 )  and i t  ends at the axis ( r ,  z )  = (0, z o ) ,  say. From (A 2) it then follows 
thatf(z,) = 0. Hence apart from the two double zeros at  the disks, (A 5), the similarity 
functionf(z) has one (and only one) additional zero at z = zo when there is a two-cell 
structure. As rst + 0 the cell near the top disk shrinks in size and we must have zo 1 .  
In the limit f(z) has a triple zero at z = 1 : 

f (1)  = f ( 1 )  = f ( l )  = 0 as rst 4 0 .  

The extra conditionf( 1 )  = 0 is the same as before. This condition can be used to locate 
the transition value s = sSt for a given Ek-number by means of the similarity 
hypothesis. A t  Ek = 0-01 the similarity equations have been solved in the range 
- 1 < s < 0 and the results are compared with those of the confined calculation - if 
available - in table 2. In  this table r = 0.2233 and c = (Ek/Ro)i  (Ek = 0.01, 
Ro = 1 -s). A bar (-) means that the case in question has not been calculated, while 
‘none’ indicates that the similarity functionf(z), (A 2), does not vanish in the range 
0 < z < 1 between the disks. 

From table 2 it is found that the top-disk vorticity vanishes a t  s = sSt = -018, 
which should be compared with the experimental prediction -0.12 at Ek = 0.01. The 
relatively large difference between these results is likely to be due to radial effects 
not contained in the similarity hypothesis: it will be clear that a small second cell 
near r = 0, z = 1 is a non-uniformity in the flow field which requires additional terms 
in the representation (A 2). This may also be illustrated by the entry marked * in 
table 2. The corresponding value of this quantity at  r = 00824 was found to be 0-008 
and this is significantly closer to the similarity value 0007. This means that the region 
of validity of the similarity assumptions strongly depends on the distance rSt from 
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the stagnation point to the axis. On the other hand the bottom-disk vorticity in table 
2 shows good agreement between confined and similarity results for the full range 
of s-values. The 10% difference is mainly due to numerical errors in the confined 
solution obtained with the 21 x 21 grid. To demonstrate that this 10 % error is of a 
numerical nature we compare (at s = -0.3) the bottom-disk vorticity quantity from 
table 2 for two grids, 21 x 21 and 41 x 41. These results are 0.293 and 0.309 
respectively. Extrapolation yields 0314 as compared with 0318 according to the 
similarity solution. The error thus reduces to about 1 yo. Further i t  is seen from table 
2 that the zero zo off(z) tends to 1 as s + - 0.18 and that it tends to 0 5  for s -P - 1,  
as it should by virtue of symmetry. 

Calculations of a similar nature at other values of Ek are planned for the near future. 
Finally we consider the prediction of s , ~  in the limit Ek + X I  (Re* + 0). I n  this limit 

(A 4) reduces to 

9” = 0, ~zfiv = - 2gg’, c2 = Ek/Ro,  

with boundary conditions (A 5). The solution is 

(1-s)g(z) = l - ( i - s ) z ,  

-- 6of(z) - z2( 1 - z ) ~  { (s - 1 )  z + (3 + 2s)). 
Re* 

Hence f(z) has one and only one additional zero at 

3+2s  
zo = - 

1-s ’ 

in this case. Putting zo = 1 we obtain in the limit Re* -+ 0 

Sst = - 2  3)  (A 10) 

while zo = 0 for s = -#  = g ~ l ,  in agreement with the reciprocity principle obtained 
by interchanging the angular velocities of the two disks. The result (A 10) means that, 
in the limit considered 67 % counter-rotation is required before a stagnation point will 
appear. 

Equation (A 9) gives the leading terms of a regular perturbation expansion about 
Re* = 0. The procedure may be continued, but the labour becomes tedious. Instead 
of hand calculation we hope to do this by means of a computer, using formula 
manipulation, in the near future. 
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